بررسی اثر فرآیند ECAP بر بافت آلیاژ آلومینیوم 7075

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی مواد و متالورژی دانشگاه بین‌المللی امام خمینی (ره) قزوین

2 کارشناسی ارشد دانشکده مهندسی و علم مواد دانشگاه صنعتی شریف، تهران

3 دانشیار دانشکده مهندسی مواد و متالورژی دانشگاه علم و صنعت ایران

4 استاد دانشکده مهندسی مواد و متالورژی دانشگاه علم و صنعت ایران

چکیده

هدف از پژوهش حاضر بررسی بافت آلیاژ آلومینیوم 7075 پرس شده در کانال‌های همسان زاویه‌دار (ECAP) در شرایط عملیات حرارتی آنیل در مسیرهای مختلف می‌باشد. در این پژوهش نمونه‌ها پس از عملیات حرارتی آنیل تحت 4 پاس فرآیند ECAP در دمای محیط در مسیرهای A و BC قرار گرفتند. پس از تولید نمونه‌ها بافت نمونه‌ها در دو جهت مختلف به صورت کمی و کیفی به‌وسیله XRD و EBSD مورد بررسی قرار گرفت. در ضمن اثر غلاف دار کردن نمونه‌ها با لوله مسی بر بافت نیز بررسی شد. بررسی کمی و کیفی بافت با استفاده از تصاویر قطبی و توابع توزیع جهت‌گیری و همچنین محاسبات اجزاء بافت ECAP نشان داد، بافت پاس‌ اول ECAP وابستگی زیادی به بافت اولیه دارد، ولی بافت پاس‌های بعدی بیشتر به مسیر فرآیند وابسته است. محاسبات انجام شده با استفاده از نرم‌افزار Labotex نشان داد انطباق خوبی بین نتایج به‌دست آمده در دو جهت مختلف وجود دارد و در ضمن استفاده از غلاف مسی باعث کاهش اندکی در استحکام بافت و در نتیجه آن باعث بهبود همگنی ریزساختار می‌شود.    

کلیدواژه‌ها


عنوان مقاله [English]

Texture evolution of ultrafine grained Al-7075 alloy produced by ECAP

نویسندگان [English]

  • Mohammad hossein Shaeri 1
  • Morteza Shaeri 2
  • Mohammad taghi Salehi 3
  • S.Hossein Seyyedein 3
  • Mohammad reza Abutalebi 4
1
2
3
4
چکیده [English]

The aim of current research was to examine the texture of annealed Al-7075 alloy that develops during Equal channel angular pressing (ECAP) in different ECAP routes. After annealing heat treatment, the material was pressed up to 4 passes by route A and BC at room temperature. The effect of copper tube casing on the texture evolution was also investigated. The texture was studied by X-Ray diffractometer in ED-plane as well as TD-plane. The qualitative and quantitative analysis of the texture reveals that the texture of the first pass is relevant to initial texture, but by increasing pass number this dependency disappears and the texture is mainly relevant to processing route. The texture calculation by Labotex software shows that the results in both TD (z) and ED (x) planes are in good agreement and covering the specimens with copper tube causes a decrease in texture strength and microstructure inhomogeneity of the specimens.

کلیدواژه‌ها [English]

  • Equal channel angular pressing
  • Al-7075 alloy
  • Texture
  • Texture components
1-       Baik, S. C., Estrin, Y., Hellmig, R. J., Jeongc, H. T., Brokmeier, H. G. & Kim, H. S. (2003). Modeling of texture evolution of copper under equal channel angular pressing. z metallk, 94, 1189-1198.
2-       Beyerlein, I. J., Li, S., Necker, C. T., Alexander, D. J. & Tomé, C. N. (2005). Non-uniform microstructure and texture evolution during equal channel angular extrusion. Philo. Mag, 85, 1359-1394.
3-       Beyerlein, I. J. & Tóth, L. S. (2009). Texture evolution in equal-channel angular extrusion. Prog Mater Sci, 54, 427-510.
4-       Cao, W. Q., Godfrey, A. & Liu, Q. (2003). EBSP investigation of microstructure and texture evolution during equal channel angular pressing of aluminium. Mater Sci Eng A, 361, 9-14.
5-       Chowdhury, S. C., Xu, C. & Langdon, T. G. (2008). Texture evolution in an aluminum alloy processed by ECAP with concurrent precipitate fragmentation. Mater Sci Eng A, 473, 219-225.
6-       Ferrase, S., Segal, V. M., Hartwig, K. T. & Goforth, R. E. (1997). Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular. Metall Mater Trans A, 28, 1047-1057.
7-       Ferrase, S., Segal, V. M., Kalidindi, S. R. & Alford, F. (2004). Texture evolution during equal channel angular extrusion Part I. Effect of route, number of passes and initial texture. Mater Sci Eng A, 368, 28-40.
8-       Gholinia, A. Bate, P. & Prangnell, P. B. (2002). Modelling texture development during equal channel angular extrusion of aluminum. Acta Mater, 50, 2121-2136.
9-       Gholinia, A., Prangnell, P. B. & Markushev, M. V. (2000). The effect of strain path on the development of deformation structures in severely deformed Aluminium alloys processed by ECAE. Acta Mater, 48, 1115-1130.
10-   Li, S, Beyerlein, I. J. & Alexander, D. J. (2006). Characterization of deformation textures in pure copper processed by equal channel angular extrusion via route A. Mater Sci Eng A, 431, 339-345.
11-   Li, S, Beyerlein, I. J., Alexander, D. J. & Vogel, S. C. (2005). Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling. Acta Mater, 53, 2111-2125.
12-   Li, S., Beyerlein, I. J., Alexander, D. J. & Vogel, S. C. (2005). Texture evolution during equal channel angular extrusion: effect of initial texture from experiment and simulation. Scr Mater, 52, 1099-1104.
13-   Li, S, Beyerlein, I. J. & Bourke, M. A. M. (2005). Texture formation during equal channel angular extrusion of fcc and bcc materials: comparison with simple shear. Mater Sci Eng A, 394, 66-77.
14-   Li, S., Gazder, A., Beyerlein, I. J., Pereloma, E. V. & Davies, C. H. J. (2006). Effect of processing route on microstructure and texture development in equal channel angular extrusion of interstitial-free steel. Acta Mater, 54, 1087-1100.
15-   Shaeri, M. H., Djavanroodi, F., Sedighi, M., Ahmadi, S., Salehi, M. T. & Seyyedein, S. H. (2013). Effect of copper tube casing on strain distribution and mechanical properties of Al-7075 alloy processed by equal channel angular pressing. J Strain Analysis Eng Des, 48, 512-521.
16-   Suwas, S., Arruffat-Massion, R., Tóth, L. S., Fundenberger, J. J., Eberhardt, A. & Skrotzki, W. (2006). Evolution of texture in copper during equal channel angular extrusion-the role of material variables. Metall Mater Trans A, 37, 739-753.
17-   Suwas, S., Tóth, L. S., Fundenberger, J. J., Eberhardt, A. & Skrotzki, W. (2003). Evolution of crystallographic texture during equal channel angular extrusion of silver. Scr Mater, 49, 1203-1208.
18-   Tóth, L. S., Arruffat Massion, R., Germain, I., Baik, S. C. & Suwas, S. (2004). Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field. Acta Mater, 52, 1885-1898.
19-   Valiev, R. Z. & Langdon, T. G. (2006). Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Prog Mater Sci, 51, 881-981.
20-   Werenskiold, J. C. & Roven, H. J. (2005). Microstructure and texture evolution during ECAP of an AlMgSi alloy: Observations, mechanisms and modeling. Mater Sci Eng A, 410-411, 174-177.
21-   Xu, C. & Langdon, T. G. (2003). Influence of a round corner die on flow homogeneity in ECA pressing. Scr Mater, 48, 1-4.
22-   Xu, C. & Langdon, T. G. (2007). The development of hardness homogeneity in aluminum and an aluminum alloy processed by ECAP. J Mater Sci, 42, 1542-1550.