تحولات ریزساختاری فولاد زنگ‌نزن 304 نیمه‌جامد شده پس از تغییرشکل پلاستیک شدید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشکده مهندسی متالورژی و مواد دانشگاه تهران

2 عضو هیأت علمی دانشکده مهندسی متالورژی و مواد دانشگاه تهران

3 دکترای دانشکده مهندسی متالورژی و مواد دانشگاه تهران

چکیده

شکل دهی فلزات در ناحیه نیمه جامد در مقایسه با شکل دهی آنها به وسیله روش های ریخته گری یا آهنگری از مزایای بسیاری برخوردار است. با این حال، به خاطر دمای کاری بالا و پیچدگی فرآیند، تحقیقات زیادی در زمینه فرآیند نیمه جامد فولادها گزارش نشده است. بنابراین، این پژوهش به مطالعه تحولات ریزساختاری در حین ذوب جزئی فولاد زنگ نزن 304 که به روش تغییرشکل پلاستیک شدید در حالت جامد کرنش اولیه داده شده است، می پردازد. همچنین محاسبات ترمودینامیکی به وسیله نرم افزار ترموکلک انجام پذیرفته و نتایج آن با مشاهدات تجربی مقایسه می گردد. در این پژوهش، فرآیند نورد تکرارشونده با غلتک های صاف و انحناء دار (RCSR) به عنوان یک روش نوین برای اعمال تغییرشکل پلاستیک شدید قبل از فرآیند نیمه جامد مورد استفاده قرار می گیرد. تحولات ریزساختاری در دماها و زمان های نگهداری مختلف بررسی می شوند. علاوه بر آن، تشکیل فاز مارتنزیت ناشی از کرنش در طی فرآیند RCSR بررسی می گردد. نتایج نشان می دهند که برای نمونه 30 سیکل RCSR شده، ساختار نیمه جامد کروی ریزتری با اندازه متوسط ذرات mµ 75 در دمای ℃ 1425 و زمان نگهداری 3 دقیقه بدست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Semi-solid microstructural evolution of severely deformed AISI 304 stainless steel

نویسندگان [English]

  • Peyman Asghari Rad 1
  • Mahmoud Nili-Ahmadabadi 2
  • Hassan Shirazi 3
1 School of Metallurgy and Materials Engineering, University of Tehran
2 Professor, School of Metallurgy and Materials Engineering, University of Tehran
3 PhD, School of Metallurgy and Materials Engineering, University of Tehran
چکیده [English]

Semi-solid metal forming offers many advantages in comparison with conventional casting and forging. However, due to the high-melting temperature and related difficulties, there is relatively a few experimental data on the semi-solid processing of steels. Therefore, this study is subjected to the microstructure evolution during partial remelting of 304 stainless steel which is pre-deformed in solid state by a severe plastic deformation (SPD) technique. Thermodynamic calculations were carried out by Thermo-Calc software and the results were compared with the experimental observations. In this study, repetitive corrugation and straightening by rolling (RCSR) process as a new severe plastic deformation technique is utilized to induce a great amount of strain in material prior to semi-solid process. Microstructural evolutions were studied in different temperatures and holding times during semi-sold process. The results indicate that finer globular semi-solid microstructure is achieved from 30 cycles RCSR processed specimen after 3 minutes holding at 1425 ℃.

کلیدواژه‌ها [English]

  • Semi-solid process
  • 304 stainless steel
  • severe plastic deformation
  • RCSR
  • Thermo-Calc
[1]     M. C. Flemings, "Behavior of metal alloys in the semisolid state," Metallurgical Transactions B, vol. 22, pp. 269-293, 1991.
[2]     Z. Fan, "Semisolid metal processing," International materials reviews, vol. 47, pp. 49-85, 2002.
[3]     D. Spencer, R. Mehrabian, and M. C. Flemings, "Rheological behavior of Sn-15 pct Pb in the crystallization range," Metallurgical Transactions, vol. 3, pp. 1925-1932, 1972.
[4]     M. Mada and F. Ajersch, "Rheological model of semi-solid A356-SiC composite alloys. Part I: Dissociation of agglomerate structures during shear," Materials Science and Engineering: A, vol. 212, pp. 157-170, 1996.
[5]     J. Gabathuler, D. Barras, Y. Krahenbuhl, and J. Weber, "Evaluation of various processes for the production of billets with thixotropic properties," in Proc. of the 2nd Intl. Conf. on Semi-solid Processing of Alloys and Composites, Boston, USA, 1992, pp. 33-46.
[6]      W. Jirattiticharoean, H. Jones, H. Atkinson, I. Todd, and P. Kapranos, "Thixoforming of aluminium 7xxx alloys produced using a cooling slope [C]," in Proceedings of 8th International Conference S2P Semi-Solid Processing, Limassol (Chipre), 2004, pp. 1-10.
[7]     S. Ji, Z. Fan, and M. Bevis, "Semi-solid processing of engineering alloys by a twin-screw rheomoulding process," Materials Science and Engineering: A, vol. 299, pp. 210-217, 2001.
[8]     W. Lapkowski, "Some studies regarding thixoforming of metal alloys," Journal of Materials Processing Technology, vol. 80, pp. 463-468, 1998.
[9]     E. Tzimas and A. Zavaliangos, "Evolution of near-equiaxed microstructure in the semisolid state," Materials Science and Engineering: A, vol. 289, pp. 228-240, 2000.
[10]    N. Saklakoglu, I. E. Saklakoglu, M. Tanoglu, O. Oztas, and O. Cubukcuoglu, "Mechanical properties and microstructural evaluation of AA5013 aluminum alloy treated in the semi-solid state by SIMA process," Journal of Materials Processing Technology, vol. 148, pp. 103-107, 2004.
[11]    R. Doherty, K. Kashyap, and S. Panchanadeeswaran, "Direct observation of the development of recrystallization texture in commercial purity aluminum," Acta metallurgica et materialia, vol. 41, pp. 3029-3053, 1993.
[12]    J. C. Choi and H. J. Park, "Microstructural characteristics of aluminum 2024 by cold working in the SIMA process," Journal of Materials Processing Technology, vol. 82, pp. 107-116, 1998.
[13]    H. V. Atkinson, "Modelling the semisolid processing of metallic alloys," Progress in materials science, vol. 50, pp. 341-412, 2005.
[14]    P. Cezard, R. Bigot, V. Favier, and M. Robelet, "Thixoforming of steel: experiments on thermal effects," in Advanced Methods in Material Forming, ed: Springer, 2007, pp. 309-320.
[15]    B. Heidarian, M. Nlili-Ahmadabadi, and M. Moradi, "Mechanical properties of thixo-formed austempered ductile iron," Transactions of nonferrous metals society of China, vol. 20, pp. s798-s804, 2010.
[16]    F. Pahlevani and M. Nili-Ahmadabadi, "Development of semi-solid ductile cast iron," International Journal of Cast Metals Research, 2013.
[17]    W. Püttgen, B. Hallstedt, W. Bleck, J. Löffler, and P. Uggowitzer, "On the microstructure and properties of 100Cr6 steel processed in the semi-solid state," Acta Materialia, vol. 55, pp. 6553-6560, 2007.
[18]    W. Püttgen, B. Hallstedt, W. Bleck, and P. Uggowitzer, "On the microstructure formation in chromium steels rapidly cooled from the semi-solid state," Acta Materialia, vol. 55, pp. 1033-1042, 2007.
[19]    G. Gu, R. Pesci, E. Becker, L. Langlois, R. Bigot, and M. Scheel, "Quantification and localization of the liquid zone of partially remelted M2 tool steel using X-ray microtomography and scanning electron microscopy," Acta Materialia, vol. 60, pp. 948-957, 2012.
[20]    M. Robert and R. Bubenik, "Microstructural modifications during thixocasting AISI 304 stainless steel," in Proceedings of the 11th Scientific International Conference “Achievements in Mechanical and Materials Engineering” AMME, 2002, pp. 234-237.
[21]    J.-Y. Li, S. Sugiyama, and J. Yanagimoto, "Microstructural evolution and flow stress of semi-solid type 304 stainless steel," Journal of Materials Processing Technology, vol. 161, pp. 396-406, 2005.
[22]    R. Z. Valiev and T. G. Langdon, "Principles of equal-channel angular pressing as a processing tool for grain refinement," Progress in Materials Science, vol. 51, pp. 881-981, 2006.
[23]    F. Hajiakbari, M. Nili-Ahmadabadi, B. Poorganji, and T. Furuhara, "Control of austenite to martensite transformation through equal channel angular pressing aided by thermodynamic calculations," Acta Materialia, vol. 58, pp. 3073-3078, 2010.
[24]    M. I. Mobarake, M. Nili-Ahmadabadi, B. Poorganji, A. Fatehi, H. Shirazi, T. Furuhara, et al., "Microstructural study of an age hardenable martensitic steel deformed by equal channel angular pressing," Materials Science and Engineering: A, vol. 491, pp. 172-176, 2008.
[25]    I. Shuro, M. Umemoto, Y. Todaka, and S. Yokoyama, "Phase transformation and annealing behavior of SUS 304 austenitic stainless steel deformed by high pressure torsion," in Materials Science Forum, 2010, pp. 334-337.
[26]    A. P. Zhilyaev and T. G. Langdon, "Using high-pressure torsion for metal processing: Fundamentals and applications," Progress in Materials Science, vol. 53, pp. 893-979, 2008.
[27]    N. Tsuji, N. Kamikawa, H. Kim, and Y. Minamino, "Fabrication of bulk nanostructured materials by ARB(accumulative roll bonding) process," in Ultrafine Grained Materials III(as held at the 2003 TMS Annual Meeting), 2004, pp. 219-226.
[28]    S. C. Yoon, A. Krishnaiah, U. Chakkingal, and H. S. Kim, "Severe plastic deformation and strain localization in groove pressing," Computational Materials Science, vol. 43, pp. 641-645, 2008.
[29]    J. Lee and J. Park, "Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement," Journal of Materials Processing Technology, vol. 130, pp. 208-213, 2002.
[30]    S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, and M. Iranpour, "Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP," Journal of Alloys and Compounds, vol. 466, pp. 67-72, 2008.
[31]    M. Moradi, M. Nili-Ahmadabadi, B. Poorganji, B. Heidarian, M. Parsa, and T. Furuhara, "Recrystallization behavior of ECAPed A356 alloy at semi-solid reheating temperature," Materials Science and Engineering: A, vol. 527, pp. 4113-4121, 2010.
[32]    M. Toofaninejad, M. Nili-Ahmadabadi, and H. Shirazi, "Microstructural evolution of semi-solid type 304 stainless steel deformed severely by ECAP," in Solid State Phenomena, 2015, pp. 99-104.
[33]    M. Toofaninejad and M. N. Ahmadabadi, "Effect of Equal Channel Angular Pressing on the Microstructure and Mechanical Properties of AISI Type 304 Austenitic Stainless Steel," in Advanced Materials Research, 2014, pp. 86-90.
[34]    A. Mirsepasi, M. Nili-Ahmadabadi, M. Habibi-Parsa, H. Ghasemi-Nanesa, and A. F. Dizaji, "Microstructure and mechanical behavior of martensitic steel severely deformed by the novel technique of repetitive corrugation and straightening by rolling," Materials Science and Engineering: A, vol. 551, pp. 32-39, 2012.
[35]    S. Mirab, M. Nili‐Ahmadabadi, A. Khajezade, M. Abshirini, M. H. Parsa, and N. Soltani, "On the Deformation Analysis during RCSR Process Aided by Finite Element Modeling and Digital Image Correlation," Advanced Engineering Materials, 2016.
[36]    H. Shahmir, M. Nili-Ahmadabadi, A. Razzaghi, M. Mohammadi, C. T. Wang, J. M. Jung, et al., "Using dilatometry to study martensitic stabilization and recrystallization kinetics in a severely deformed NiTi alloy," Journal of Materials Science, vol. 50, pp. 4003-4011, 2015.
[37]    P. Asghari-Rad, M. Nili-Ahmadabadi, H. Shirazi, S. Hossein nedjad, and S. Koldorf, "A significant improvement in the mechanical properties of AISI 304 stainless steel by a combined RCSR and annealing process," Advanced Engineering Materials, 2016.
[38]    P. Seo and C. Kang, "The effect of raw material fabrication process on microstructural characteristics in reheating process for semi-solid forming," Journal of Materials Processing Technology, vol. 162, pp. 402-409, 2005.
[39]    A. K. De, D. C. Murdock, M. C. Mataya, J. G. Speer, and D. K. Matlock, "Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction," Scripta Materialia, vol. 50, pp. 1445-1449, 2004.
[40]    M. Whelan, P. Hirsch, R. Horne, and W. Bollmann, "Dislocations and stacking faults in stainless steel," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1957, pp. 524-538.
[41]    L. Murr, "Stacking-fault anomalies and the measurement of stacking-fault free energy in fcc thin films," Thin Solid Films, vol. 4, pp. 389-412, 1969.
[42]    P. L. Mangonon and G. Thomas, "The martensite phases in 304 stainless steel," Metallurgical transactions, vol. 1, pp. 1577-1586, 1970.
[43]    G. Olson and M. Cohen, "A general mechanism of martensitic nucleation: Part II. FCC→ BCC and other martensitic transformations," Metallurgical transactions A, vol. 7, pp. 1905-1914, 1976.
[44]    R. L. Plaut, C. Herrera, D. M. Escriba, P. R. Rios, and A. F. Padilha, "A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance," Materials Research, vol. 10, pp. 453-460, 2007.
[45]    D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, (Revised Reprint): CRC press, 2009.
[46]    Y. Sirong, L. Dongcheng, and N. Kim, "Microstructure evolution of SIMA processed Al2024," Materials Science and Engineering: A, vol. 420, pp. 165-170, 2006.